Ukljucite javascript
Register Log in

Archive > Year 2007, Number 2

Muscle Metabolism And Fatigue During Sprint Exercise: Effects Of Creatine Supplementation


Authors

Bogdanis Gregory, Faculty of Physical Education and Sports Science, University of Athens
Maridaki Maria, Faculty of Physical Education and Sports Science, University of Athens
Papaspyrou Aggeliki, Faculty of Physical Education and Sports Science, University of Athens

Abstract

The aim of this paper was to examine muscle metabolism and fatigue during sprint exercise and also to critically evaluate the evidence regarding the efficacy of Cr supplementation in improving performance and reducing fatigue during one bout and repeated bouts of sprint exercise. Although glycolysis provides more than 50% of total energy supply during a single sprint, its contribution is reduced significantly and may drop to zero when sprints are repeated. Thus in this case, muscle relies exclusively on phosphocreatine (PCr) degradation and aerobic metabolism. Fatigue is shown to be related more to energy deficiency and performance recovery during repeated sprints follows closely the resynthesis of PCr. Due to the important role of PCr on muscle metabolism, an increase of PCr and creatine (Cr) content following oral Cr supplementation has been shown to be beneficial for performance. The effect of Cr supplementation on single sprint performance is small (around 5%) and not always present. A more substantial improvement in performance (around 10%) is demonstrated during repeated sprints, especially during the last repetitions. Although, Cr supplementation has not always proved to be beneficial for performance enhancement, even a small improvement may be important for competitive athletes. Research is needed to investigate and substantiate the effects of combining Cr supplementation with long term training on single and repeated sprints performance.

Keywords

phosphocreatine, anaerobic metabolism, energy supply, high intensity exercise

Download full article

References

  1. Ahmun, R. P., Tong, R. J., & Grimshaw, P. N. (2005). The effects of acute creatine supplementation on multiple sprint cycling and running performance in rugby players. J. Strength Cond Res., 19(1): 92-97.
  2. Allsop, P., Cheetham, M., Brooks, S, Hall, G. M., & Williams, C. (1990). Continuous intramuscular pH measurement during the recovery from brief, maximal exercise in men. Eur. J. Appl. Physiol., 59: 465-470.
  3. Balsom, P. D., Ekblom, B., Soderlund, K., Sjodin, B., & Hultman, E. (1993). Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J. Med. Sci. Sports., 3: 143-149.
  4. Balsom, P. D., Soderlund, K., Sjodin, B., & Ekblom, B. (1995). Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol. Scand., 154(3): 303-10.
  5. Bar-Or, O. (1978). A new Anaerobic Capacity test: characteristics and applications. Presented at the 21st World Congress in Sports Medicine, Brasilia, Sept. 7-12, pp. 1-26.
  6. Barr, S. I. & Rideout, C. A. (2004). Nutritional Considerations for Vegetarian Athletes. Nutrition, 20: 696-703.
  7. Bemben, M. G. & Lamont, H. S. (2005). Creatine Supplementation and Exercise Performance. Sports Med., 35(2): 107-125.
  8. Bessman, S. P., & Geiger, P. J. (1981). Transport of energy in muscle: The phosphorylcreatine shuttle. Science, 211: 448-452.
  9. Bogdanis, G. C., Nevill, M. E., Boobis, L. H., Lakomy, H. K. A., & Nevill, A. M. (1995a). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol., 482: 467-480.
  10. Bogdanis, G. C., Nevill, M. E., Lakomy, H. K. A., Jenkins, D. G., & Williams, C. (1995b). Oral creatine supplementation and power output during repeated sprint running. Sport & Society, Suppl. 11: 28.
  11. Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. A. (1996a). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol., 80: 876-884.
  12. Bogdanis, G. C., Nevill, M. E., Lakomy, H. K. A., Graham, C. M., & Louis, G. (1996b). Effects of active recovery on power output during repeated maximal sprint cycling. Eur. J. Applied Physiol., 74: 461-469
  13. Bogdanis, G. C., Nevill, M. E., Lakomy, H. K. A., & Boobis, L. H. (1998). Power output and muscle metabolism during and following recovery from 10s and 20s of maximal sprint exercise in humans. Acta Physiol Scand., 163: 261-272.
  14. Bosco, C., Tihanyi, J., Pucspk, J., Kovacs, I., Gabossy, A., Colli, R., Pulvirenti, G., Tranquilli, C., Foti, C., Viru, M., Viru, A. (1997) Effect of oral creatine supplementation on jumping and running performance. Int J. Sports Med., 18: 369-372.
  15. Brault, J. J., Kirk, A. A., & Terjung, R. L. (2003a). Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J. Appl. Physiol., 94: 2173–2180.
  16. Brault, J. J., & Terjung, R. L.(2003b). Creatine uptake and creatine transporter expression among rat skeletal muscle fiber types. Am. J. Physiol. Cell Physiol., 284(6): C1481-1489.
  17. Burgomaster K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol., 98(6): 1985-1990.
  18. Burke, D. G., Chilibeck, P. D., Parise, G., Candow, D. G., Mahoney, D., & Tarnopolsky, M. (2003). Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc., 35: 1946–1955.
  19. Casey, A., Constantin-Theodosiu, D., Howell, S., Hultman, E., & Greenhaff, P. L. (1996). Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am. J. Physiol., 271: E31-E37.
  20. Casey, A., & Greenhaff, P. L. (2000). Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am. J. Clin. Nutr., 72(2): 607S-617S.
  21. Chasiotis, D., Sahlin, K., & Hultman, E. (1982). Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol., 53(3): 708-715.
  22. Cheetham, M. E., Boobis, L. H., Brooks, S., & Williams, C. (1986). Human muscle metabolism during sprint running. J. Appl. Physiol., 61(1): 54-60.
  23. Cottrell, G. T., Coast, J. R., Herb, R. A. (2002). Effect of recovery interval on multiple-bout sprint cycling performance after acute creatine supplementation. J. Strength Cond. Res., 16(1): 109-116.
  24. Cooke, R., & Pate, E. (1990). The inhibition of muscle contraction by the products of ATP hydrolysis. In: Taylor, A. W., Gollnick, P. D., Green, H. J., Ianuzzo, C. D., Noble, E. G., Metivier, G. & Sutton, J. R. (Eds.). Biochemistry of Exercise VII, Int. Series on Sport Sciences, Vol. 21 (pp.59-72). Champaign, IL: Human Kinetics Books.
  25. Cooke, W. H., Grandjean, P. W., Barnes, W. S. (1995). Effect of oral creatine supplementation on power output and fatigue during bicycle ergometry. J. Appl. Physiol., 78(2): 670-673.
  26. Cornish, S. M., Chilibeck, P. D., & Burke, D. G. (2006). The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. J. Sports Med. Phys.Fitness., 46(1): 90-98.
  27. Cox, G., Mujika, I., Tumilty, D., & Burke, L. (2002). Acute creatine supplementation and performance during a field test simulating match play in elite female soccer players. Int. J. Sport Nutr. Exerc. Metab., 12(1): 33-46.
  28. Delecluse, C., Diels, R., & Goris, M. (2003). Effect of creatine supplementation on intermittent sprint running performance in highly trained athletes. J. Strength Cond Res., 17(3): 446-454.
  29. Derave, B., Eijnde, O., & Hespel, P. (2003). Creatine supplementation in health and disease: What is the evidence for long-term efficacy? Mol and Cell Biochem., 244: 49-55.
  30. Deutekom M., Beltman J. G., de Ruiter, C. J., de Koning, J. J., & de Haan, A. (2000). No acute effects of short-term creatine supplementation on muscle properties and sprint performance. Eur. J. Appl. Physiol., 82(3): 223-229.
  31. Earnest, C. P., Snell P. G., Rodriguez, R., Almada, A. L., & Mitchell T. L. (1995). The effect of creatine monohydrate ingestion on anaerobic power indices muscular strength and body composition (abstract). Acta Physiol Scand., 153: 207-209.
  32. Edwards, R. H. T. (1983). Biochemical bases of fatigue in exercise performance: Catastrophe theory of muscular fatigue. In: Knuttgen, H. G., Vogel, J. A., & Poortmans, J. (Eds.). Biochemistry of Exercise, Int. Series on Sport Sciences, Vol. 13. (Proceedings of the 5th International Symposium on the Biochemistry of Exercise, June 1-5 1982, Boston, Massachusetts, U.S.A., pp. 3-28). Champaign, IL: Human Kinetics Books.
  33. Erickson-Viitanen S., Viitanen P.. Geiger P. J., Yang W. C. T., & Bessman S. P. (1982). Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors. J. Biolog Chem., 257(23): 14395-14404.
  34. Febbraio, M. A, Flanagan, T. R, Snow, R. J, Zhao, S, & Carey, M. F. (1995). Effect of creatine supplementation on intramuscular TCr metabolism and performance during intermittent supramaximal exercise in humans. Acta Physiol Scandin., 155: 387-395.
  35. Finn, J. P., Ebert, T. R., Withers, R. T., Carey, M. F., Mackay, M., Phillips, J. W., & Febbraio, M. A. (2001). Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. Eur. J. Appl. Physiol., 84(3): 238-243.
  36. Francaux, M., & Poortmans, J. R. (1999). Effects of training and creatine supplement on muscle strength and body mass. Eur. J. Appl. Physiol., 80: 165-168.
  37. Fryer, M. W., Owen, V. J., Lamb, G. D., & Stephenson, D. G. (1995). Effects of creatine phosphate and Pi on Ca++ movements and tension development in rat skinned skeletal muscle fibres. J. Physiol., 482: 123-140.
  38. Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol., 75(2): 712-719.
  39. Glaister, M., Lockey, R. A., Abraham, C. S., Staerck, A., Goodwin, J. E., & McInnes, G. (2006). Creatine supplementation and multiple sprint running performance. J. Strength Cond. Res., 20(2): 273-277.
  40. Godt, R. E., & Nosek, T. M. (1986). The changes in intracellular milieu accompanying fatigue or hypoxia depress the contractile machinery of rabbit skeletal and guinea-pig cardiac muscle fibres. J. Physiol., 371: 174P.
  41. Green, A. L., Hultman, E., McDonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am. J. Physiol., 271(Endocrinol Metabol 34): E821-E826.
  42. Greenhaff, P. L, Bodin, K., Soderlund, K., & Hultman, E. (1994). Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am. J. Physiol., 266 (Endocrinol Metab 29): E725-E730.
  43. Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K., & Hultman, E. (1993a). Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man. Clin. Sci., 84: 565-571.
  44. Greenhaff, P. L., Ren, J. M., Soderlund, K., & Hultman, E. (1991). Energy metabolism in single human muscle fibres during contraction without and with epinephrine infusion. Am. J. Physiol., 260: E713-E718.
  45. Greenhaff, P. L., Soderlund, K., Ren, J. M., & Hultman, E. (1993b). Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. J. Physiol., 460: 443-453.
  46. Grindstaff, P. D., Kreider, R., Bishop, R., Wilson, M., Wood, L., Alexander, C., & Almada, A. (1997). Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Inter. J. Sports Nutrition., 7: 330-346.
  47. Guerrero-Ontiveros, M. L., & Wallimann T. (1998). Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: Downregulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem., 184: 427-437.
  48. Harris, R., Lowe, J. A., Warnes, K., & Orme, C. E. (1997). The concentration of creatine in meat and commercial dog food. Research in Veterinary Sci., 62: 58-62.
  49. Harris, R. C., Edwards, R. H. T., Hultman, E., Nordesjo, L. O., Nylind, B., & Sahlin, K. (1976). The time course of Phosphorylcreatine Resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch., 367: 137-142.
  50. Harris, R. C., Hultman, E., Kaijser, L., Nordesjo, L. O. (1975). The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man. Scand J. Clin. Lab Invest., 35: 87-95.
  51. Harris, R. C., Nevill, M., Harris, D. B., Fallowfield, J. L., Bogdanis, G. C., & Wise J. A. (2002). Absorption of creatine supplied as a drink, in meat or solid form. J. Sports Sci., 20: 147-151.
  52. Harris, R. C., Soderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci., 83: 367-374.
  53. Havenetidis K., Cooke C. B., Butterly R., & King R. F. (2006). Incorrect calculation of power outputs masks the ergogenic capacity of creatine supplementation. Appl. Physiol Nutr Metab., 31(5): 635-642.
  54. Hespel P., Op‘t Eijnde B., Van Leemputte M., Urso B., Greenhaff P. L., Labarque V., Dymarkowski S., Van Hecke P., & Richter E. A. (2001). Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters expression of muscle myogenic factors in humans. J. Physiol., 536: 625-633.
  55. Hoffman, J. R., Stout J. R., Falvo M. J., Kang J. & Ratamess N. A. (2005). Effect of low-dose, short-duration creatine supplementation on anaerobic exercise performance. J. Strength Cond Res., 19(2): 260-4.
  56. Hultman, E., & Harris R. C. (1988). Carbohydrate metabolism. In: Poortmans, J. R. (Ed.). Principles of Exercise Biochemistry, Med. Sport Sci., Vol. 27 (pp. 78-119). Basel: Karger.
  57. Hultman, E., & Sjoholm, H. (1983). Substrate availability. In: Knuttgen, H. G., Vogel, J. A., & Poortmans, J. (Eds.). Biochemistry of Exercise, Int. Series on Sport Sciences, Vol. 13. (Proceedings of the 5th International Symposium on the Biochemistry of Exercise, June 1-5 1982, Boston, Massachusetts, U.S.A., pp. 63-75). Champaign, IL: Human Kinetics Books.
  58. Hultman, E., Soderlund, K., Timmons, J. A., Gederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. J. Appl. Physiol., 81: 232-237.
  59. Hultman, E., Spriet, L. L., & Sodelund, K. (1987). Energy metabolism and fatigue in working muscle. In: Macleod, D., Maughan, R., Nimmo, M., Reilly, T., & Williams, C. (Eds.). Exercise: Benefits, limits and adaptations (pp. 63-82). London - N.York: E. and F.N. Spon.
  60. Izquierdo, M., Ibanez, J., Gonzalez-Badillo, J. J., & Gorostiaga, E. M. (2002). Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sports Exerc., 34(2): 332-343.
  61. Jones, A. M., Atter, T., & Georg, K. P. (1999). Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players. J. Sports Med. Phys. Fitness., 39(3): 189-96.
  62. Jones, D. A., & Bigland-Ritchie, B. (1986). Electrical and contractile changes in muscle fatigue. In: Saltin, B. (Ed.). Biochemistry of Exercise VI, Int. Series on Sport Sciences, Vol. 16. (pp. 377-392). Champaign, IL: Human Kinetics Books.
  63. Kamber, M., Koster, M., Kreis, R., Walker, G., Boesch, C., & Hoppeler, H. (1999). Creatine supplementation-Part I: performance clinical chemistry and muscle volume. Med. Sci. Sports Exerc., 31(12): 1763-1769.
  64. Kavanagh, M. F., & Jacobs, I. (1988). Breath-by-breath oxygen consumption during performance of the Wingate test. Can J. Sp Sci., 13: 91-93.
  65. Kinugasa, R., Akima, H., Ota, A., Ohta, A., Sugiura, K., & Kuno, S. Y. (2004). Short-term creatine supplementation does not improve muscle activation or sprint performance in humans. Eur. J. Appl. Physiol., 91(2-3) :230-237.
  66. Kreider, P. B., Ferreira, M., Wilson, M., Grindstaff, P., Plisk, S., Reinardy, J., Cantler, E., & Almada, A. L. (1998). Effects of creatine supplementation on body composition strength and sprint performance. Med. Sci. Sports Exerc., 30(1): 73-82.
  67. Kurosawa, Y., Hamaoka, T., Katsumura, T., Kuwamori, M., Kimura, N., Sako, T., & Chance, B. (2003). Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise. Mol Cell Biochem., 244(1-2): 105-112.
  68. Leenders, N., Sherman, W. M., Lamb, D. R., & Nelson, T. E. (1999). Creatine supplementaion and swimming performance. Inter. J. Sports Nutr., 9: 251-262.
  69. Lemon, P. W. R. (2002). Dietary creatine supplementation and exercise performance: Why inconsistent results? Can J. Appl. Physiol., 27(6): 663-680.
  70. Loike, J. D., Zalutsky, D. L., Kaback, E., Miranda, A. F., & Silverstein, S. C. (1988). Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci. USA., 85: 807–811.
  71. McCully, K. K., Kakihira, H., Vandenborne, K., & Kent-Braun, J. (1991). Noninvasive measurements of activity-induced changes in muscle metabolism. J. Biomech., 24(Suppl 1): 153-161.
  72. McKenna, M. J., Harmer, A. R., Fraser, S. F., & Li J. L. (1996). Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand., 156(3): 335-46
  73. McKenna, M. J., Morton , J., Selig, S. E., & Snow, R. J. (1999). Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J. Appl. Physiol., 187(6): 2244-2252.
  74. Medbo, J. I., & Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol., 67(5): 1881-1886.
  75. Mesa, J. L. M., Ruiz, J. R., Gonzalez-Gross, M. M., Sainz, A. G., & Garzon, M. J. C. (2002). Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med., 32(14): 903-44.
  76. Mujika, I., Chatard, J. C., Lacoste, L., Barale, F., & Geyssant, A. (1996). Creatine supplementation does not improve sprint performance in competitive swimmers. Med. Sci. Sports Exerc., 28: 1435-1441.
  77. Mujika, I., Padilla, S., Ibanez, J., Izquierdo, M., & Gorostiaga, E. (2000). Creatine supplementation and sprint performance in soccer players. Med. Sci. Sports Exerc., 32: 518-525.
  78. Nevill, A. M., Jones, D. A., McIntyre, D., Bogdanis, G. C., Nevill, M. E. (1997). A model for phosphocreatine resynthesis. J. Appl. Physiol., 82: 329-335.
  79. Nevill, M. E., Bogdanis, G. C., Boobis, L. H., Lakomy, H. K. A., & Williams, C. (1996). Muscle metabolism and performance during sprinting. Ιn: Maughan, R. J., & Shirreffs, S. M. (Eds.). Biochemistry of Exercise IX. Chapter 19 (pp. 243-259). Champaign, IL: Human Kinetics Books.
  80. Nevill, M. E., Boobis, L. H., Brooks, S., & Williams, C. (1989). Effect of training on muscle metabolism during treadmill sprinting. J. Appl. Physiol., 67(6): 2376-2382.
  81. Okudan, N., & Gokbel, H. (2005). The effects of creatine supplementation on performance during the repeated bouts of supramaximal exercise. J. Sports Med. Phys. Fitness., 45(4): 507-511.
  82. Parkhouse, W. S., & McKenzie, D. C. (1984). Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review. Med. Sci. Sports Exerc., 16(4): 328-338.
  83. Pluim, B. M., Ferrauti, A., Broekhof, F., Deutekom, M., Gotzmann, A., Kuipers,H., & Weber, K. (2006). The effects of creatine supplementation on selected factors of tennis specific training. Br J. Sports Med., 40(6): 507-512.
  84. Poortmans, J. R., & Francaux, M. (1999). Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med. Sci. Sports Exerc., 31: 1108-1110.
  85. Preen, D., Dawson, B., Goodman, C., Beilby J., & Ching S. (2003). Creatine supplementation: a comparison of loading and maintenance protocols on creatine uptake by human skeletal muscle. Int J. Sport Nutr Exerc Metab., 13(1): 97-111.
  86. Rankin, J. W., Ocel, J. V., & Craft, L. L. (1996). Effect of weight loss and refeeding diet composition on anaerobic performance in wrestlers. Med. Sci. Sports Exerc., 28(10): 1292-1299.
  87. Robinson, T. M., Sewell, D. A., Hultman, E., & Greenhaff, P. L. (1999). Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J. Appl. Physiol., 87: 598-604.
  88. Rockwell, J. A., Rankin, J. W., & Toderico, B. (2001). Creatine supplementation affects muscle creatine during energy restriction. Med. Sci. Sports Exerc., 33(1): 61-68.
  89. Romer, L. M., Barrington, J. P., & Jeukendrup, A. E. (2001). Effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players. Int J. Sports Med., 22(8): 546-552.
  90. Rossi, A. M., Eppenberger, H. M., Volpe, P., Cotrufo, R., & Wallimann, T. (1990). Muscle-type MM Creatine Kinase is Specifically Bound to Sarcoplasmic Reticulum and Can Support Ca2+ Uptake and Regulate Local ATP/ADP Ratios. J. Biolog Chem., 265(9): 5258-5266.
  91. Rossiter, H. B., Cannell, B. R., & Jakeman, P. M. (1996). The effect of oral creatine supplementation on the 1000-m performance of competitive rowers. J. Sports Sci., 14: 175-179.
  92. Sahlin, K. (1986) Metabolic changes limiting muscle performance. In: Saltin, B. (Ed.). Biochemistry of Exercise VI, Int. Series on Sport Sciences, Vol. 16. (pp. 323-343). Champaign, IL: Human Kinetics Books.
  93. Sahlin, K., Harris, R. C., & Hultman, E. (1979). Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J. Clin. Lab Invest., 39: 551-558.
  94. Sahlin, K., & Ren, J. M. (1989). Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J. Appl. Physiol., 67(2): 648-654.
  95. Shoubridge, E. A., & Radda, G. K. (1987). A gated 31PNMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Am. J. Physiol., 252: C532-C542.
  96. Silva, A. J., Machado, Reis, V., Guidetti, L., Bessone Alves, F., Mota, P., Freitas, J., & Baldari, C. (2007). Effect of creatine on swimming velocity, body composition and hydrodynamic variables. J. Sports Med. Phys.Fitness., 47(1): 58-64.
  97. Skare, O. C., Skadberg, O., & Wisnes, A. R. (2001). Creatine supplementation improves sprint performance in male sprinters. Scand J. Med. Sci. Sports., 11(2): 96-102.
  98. Snow, R. J., McKenna, M. J., Selig, S. E., Kemp, J., Stathis, C. G., & Zhao, S. (1998). Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J. Appl. Physiol., 84(5): 1667-1673.
  99. Snow, R. J., & Murphy, R. M. (2001). Creatine and the creatine transporter: a review. Mol Cell Biochem., 224: 169-181.
  100. Soderlund, K., Greenhaff, P. L., & Hultman, E. (1992). Energy metabolism in type I and II human muscle fibres during short term electrical stimulation at different frequencies. Acta Physiol Scand., 144: 15-22.
  101. Soderlund, K., & Hultman, E. (1991.) ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation. Am. J. Physiol., 261: E737-E741.
  102. Spriet, L. L., Soderlund, K., Bergstrom, M. & Hultman, E. (1987a). Anaerobic energy release in skeletal muscle during electrical stimulation in men. J. Appl. Physiol., 62 (2): 611-615.
  103. Spriet, L. L., Soderlund, K., Bergstrom, M., & Hultman, E. (1987b). Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J. Appl. Physiol., 62(2): 616-621.
  104. Spriet, L. L., Lindinger, M. I., McKelvie, R. S., Heigenhauser, G. J. F., & Jones, N. L. (1989). Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J. Appl. Physiol., 66(1): 8-13.
  105. Steenge, G. R., Lambourne, A., Casey, A., MacDonald, I. A., & Greenhaff, P. L. (1998). Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am. J. Physiol., 275: E974-E979.
  106. Terjung, R. L., Clarkson, P., Eichner, E. R., Greenhaff, P. L., Hespel, P. J., Israel, R. G., Kraemer, W. J., Meyer, R. A., Spriet, L. L., Tarnopolsky, M. A., Wagenmakers, J. M., & Williams, M. H. (2000). The physiological and health effects of oral creatine supplementation. Med. Sci. Sports Exerc., 32(3): 706-717.
  107. Terrillion, K. A., Kolkhorst, F. W., Dοlgener, F. A., & Joslyn, S. J. (1997). The effect of creatine supplementation on two 700-m maximal running bouts. J. Sport Nutrition, 7: 138-143.
  108. Tesch, P. A., Thorsson, A., & Fujitsuka, N. (1989). Creatine phosphate in fibre types of skeletal muscle before and after exhaustive exercise. J. Appl. Physiol., 66(4): 1756-1759.
  109. Thompson, C. H., Kemp, G. J., Sanderson, A. L., Dixon, R. M., Styles, P., Taylor, D. J., Radda, G. K. (1996) Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers. Br J. Sports Med., 30: 222-225.
  110. Umeda, T., Nakaji, S., Shimoyama, T., Yamamoto, Y., Totsuka, M., & Sugawara, K. (2004). Adverse effects of energy restriction on myogenic enzymes in judoists. J. Sports Sci., 22(4): 329-38.
  111. Van Leemputte, M., Vandenberghe, K., Hespel, P. (1999). Shortening of muscle relaxation time after creatine loading. J. Appl. Physiol., 86(3): 840-844.
  112. Van Schuylenbergh, R., Van Leemputte, M., & Hespel, P. (2003). Effects of oral creatine-pyruvate supplementation in cycling performance. Int J. Sports Med., 24(2): 144-150.
  113. Vandenberghe, K., Goris, M., Van Hecke, P., Van Leemputte, M., Vangerven, L., & Hespel, P. (1997). Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol., 83: 2055-2063.
  114. Venderley, A. M, & Campbell, W. W. (2006). Vegetarian Diets: Nutritional Considerations for Athletes. Sports Med., 36(4): 293-305
  115. Ventura-Clapier, R., Saks, V. A., Vassort, G., Lauer, C., & Elizarova, G. V. (1987). Reversible MM-creatine kinase binding to cardiac myofibrils. Am. J. Physiol., 253: C444-C455.
  116. Volek, J. S., Duncan, N. D., Mazzetti, S. A., Staron, R. S., Putukian, M., Gomez, A. L., Pearson, D. R., Fink, W. J., & Kraemer, W. J. (1999). Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med. Sci. Sports Exerc., 31: 1147-1156.
  117. Vollestad, N. K., & Sejersted, O. M. (1988). Biochemical correlates of fatigue: A brief review. Eur. J. Appl. Physiol., 57: 336-347.
  118. Vollestad, N. K., Tabata, I., & Medbo, J. I. (1992). Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol Scand., 144: 135-141.
  119. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J., 281: 21-40.
  120. Westerblad, H., Allen, D. G., & Lannergren, J. (2002). Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci., 17: 17-21.
  121. Wiedermann, D., Schneider, J., Fromme A., Thorwesten, L., & Moller, H. E. (2001). Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation-transfer NMR study. MAGMA. 13(2): 118-26.
  122. Wilson J. R., McCully K. K., Mancini D. M., Boden B., & Chance B. (1988). Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study. J. Appl. Physiol., 64(6): 2333-2339.
  123. Wootton, S. A., & Williams, C. (1983). The influence of recovery duration on repeated maximal sprints. In: Knuttgen, H. G., Vogel, J. A., & Poortmans, J. (Eds.). Biochemistry of Exercise, Int. Series on Sport Sciences, Vol. 13. (Proceedings of the 5th International Symposium on the Biochemistry of Exercise, June 1-5 1982, Boston, Massachusetts, U.S.A. pp. 269-273). Champaign, IL: Human Kinetics Books.
  124. Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews. 80: 1107-1213.
  125. Ziegenfuss, T. N., Rogers, M., Lowery, L., Mullins, N., Mendel, A., Antonio, J., & Lemon, P. (2002). Effect of Creatine Loading on Anaerobic Performance and Skeletal Muscle Volume in NCAA Division I Athletes. Nutrition. 18: 397-402.